Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions
نویسندگان
چکیده
منابع مشابه
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions
for Invex Programs via Penalty Functions J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China X. X. Huang School of Management, Fudan University, Shanghai 200433, China Abstract. In this paper, we apply the quadratic penalization technique to derive strong Lagrangian duality property for an inequality constrained invex program....
متن کاملDuality in Nonlinear Programs Using Augmented Lagrangian Functions*
A generally nonconvex optimization problem with equality constraints is studied. The problem is introduced as an “inf sup” of a generalized augmented Lagrangian function. A dual problem is defined as the “sup inf’ of the same generalized augmented Lagrangian. Sufftcient conditions are derived for constructing the augmented Lagrangian function such that the extremal values of the primal and dual...
متن کاملAugmented Lagrangian methods with smooth penalty functions
Since the late 1990s, the interest in augmented Lagrangian methods has been revived, and several models with smooth penalty functions for programs with inequality constraints have been proposed, tested and used in a variety of applications. Global convergence results for some of these methods have been published. Here we present a local convergence analysis for a large class of smooth augmented...
متن کاملGenerating functions and duality for integer programs
We consider the integer program P→max{c′x|Ax = y;x ∈ N}. Using the generating function of an associated counting problem, and a generalized residue formula of Brion and Vergne, we explicitly relate P with its continuous linear programming (LP) analogue and provide a characterization of its optimal value. In particular, dual variables λ ∈ R have discrete analogues z ∈ C, related in a simple mann...
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2010
ISSN: 1029-242X
DOI: 10.1155/2010/931590